Folaga AUV
Specifications
Diameter
-
155 mm.
Lenght
-
2180 mm.
Weight in air
-
31 kg (68 lb)
Weight in water
-
Variable: -0.35/+0.35 kg (-0.77/+0.77 lb)
Max Depth
-
80 msw in AUV mode
-
50 msw in glider mode
Min Speed
-
0 knots (enhanced maneuvrability)
Max Speed
-
2 knots
-
4 knots (optional)
Batteries
-
Li-Ion - 25.2 Volt - 49.6 Ah
-
NiMh - 12 Volt - 45 Ah (optional)
Additional Sensors
-
humidity, temperature, battery level
Endurance
-
14 hours at max. speed in AUV mode
-
days in glider mode
Navigation Sensors
-
GPS, depth-meter, 3D inclinometer
Communication
-
Radio-link
-
Acoustic link (optional)
Mission Sensors
-
User selectable (payload modularity)
What is Folaga
Folaga is a torpedo-shaped Autonomous Underwater Vehicle (AUV) that can carry multiple kinds of sensors.
It is made up of a pair of fiber-glass cylinders connected to two terminating wet sections where the steering jet-pumps and the main thruster are located.
Originally designed for just collecting few environmental parameters, the current version, with its renewed design, results well suited for a wider spectrum of applications.
Its payload modularity and the presence of an open control system make Folaga a unique and versatile platform.
Further the great maneuverability together with the possibility of multiple navigation modes, enables the execution of a variety of missions in the fields of O&G, Defense & Security, Oceanography and Environmental Monitoring.
![]() |
---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Payload Modularity
The integration of a mission payload is a very simple task, thanks to the vehicle modular design. The hull is indeed constituted by two independent parts that can be easily detached, for enabling the insertion, in the middle of the vehicle, of a payload module, hosting the equipments of interest.
By designing the payload module in order to be neutrally buoyant and balanced, any sensor or underwater instrument, be it commercially available or custom-made, can be transported by Folaga without affecting its navigation parameters and without requiring any calibration operations.
![]() |
---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |

Open Control System
Your favourite control board (Arduino, Arm, x86) can be easily hosted in a payload module, with or without other equipment.
A serial and a network link are available for connecting your board with the vehicle CPU. A set of predefined libraries provides access to all the vehicle sensors and actuators and to the communication devices (the WiFi link on surface and the acoustic modem, available as an optional feature, underwater).
In this way your Uapp (Underwater App) will get the total control of the Folaga AUV and you will be in the condition of testing in the real underwater environment your developed GNC algorithms or your coordination strategies between multiple AUVs.
Available templates will help you to code your first Uapp today!
Write your Uapp
and test your algorithms underwater today!
Enhanced Maneuvrability
One of the main distinctive features of Folaga is its high maneuverability, obtained without any moving fins or other protruding control surfaces. The motion in the surge direction is obtained through a bi-directional rear thruster, while 8 jet-pumps in two crossed configurations, located in the bow and in the stern of the vehicle, allow a wide range of steering motions. Conventional torpedo-shaped AUVs can execute maneuvres only above certain speeds, as the steering action is produced by the hydrodynamic lift originated by thrusters and control surfaces. On the contrary Folaga, by suitably combining the actions of its 8 jet pumps, can rotate around its center even when the thruster is off and can translate, either horizontally or vertically.
In addition the vehicle can also change its buoyancy, thanks to the presence of a ballast chamber in which water can be injected or ejected, and can control its hydrostatical equilibrium attitude through the internal displacement of the battery pack.
The combined use of buoyancy and attitude controls further enriches the vehicle motion possibilities, actually making Folaga a hybrid vehicle with the motion capabilities of standard self-propelled AUVs, remotely operated vehicles (ROVs), and even low-power consuming oceanographic gliders.


Multiple Navigation Modes
The presence of a redundant actuation system, enable Folaga to dive, navigate and execute various maneuvres in multiple modes, according with the mission peculiarities and needs.
Profiler
Within environmental missions requiring the acquisition of samples taken from evenly spaced points of a 3D watyer volume, the vehicle navigates on surface with the GPS link to reach a point of interest and then it simply dives vertically with 0° pitch for profiling the water column. In this case both descending and ascending motions can be executed by using, either the vertical jet-pumps only (with the vehicle neutrally buoyant), or the ballast and the internal moving mass only, or a combination of the two previous ways, with the vertical propulsion provided by changes of buoyancy and the jet-pumps used for finely trimming the pitch angle.
Glider
If the points to be sampled are distributed on a wider volume, like what happens in many oceanographic missions, the glider mode is more convenient for prolonging the endurance. In glider mode the vertical propulsion is originated by changes of buoyancy, while the horizontal motion is produced by the hydrodynamic lift coming from wings that can be easily added in the middle of the vehicle. As a result, the vehicle moves along diagonal paths and consumes electric power only for executing changes of buoyancy and attitude. The rear thuster and the steering jet-pumps are never used. In addition, changes are executed only when the vehicle is at its minimum or maximum mission depth. During the whole ascending and descending phases no actuators are used.
AUV
Within missions requiring underwater navigation phases (like during an acoustic survey of the seabed), the vehicle moves as a standard AUV, using the rear thruster for propulsion, a combination of attitude and buoyancy controls for reaching a neutrally buoyant and balanced configuration, and the jet pumps for maintaining the desired depth and controlling the pitch and heading angles during the navigation.
Further, differing from any other AUV, the hovering capability and the possibility of translating enable Folaga to reach and maintain a predefined position, to land gently on a target on the seabed, and to takeoff, either with a vertical motion or with a combination of propulsion and vertical jet-pumps.




